The Adverse Effects of Pharmaceuticals in Water Supplies

Helen E. Smith, MS, PhD, RPh
Assistant Professor
Department of Pharmaceutical Sciences
Feik School of Pharmacy

Ecotoxicology:
The study of how chemicals affect the environment and the organisms living in it.
Ecotoxicology

• What do we know?
 – Pharmaceuticals and personal care products have been detected in some groundwater, surface water, and drinking water sources
 – Some active pharmaceutical ingredients (APIs) persist in the aquatic environment at low concentrations
 – They are continuously released into the environment
 – Some have been found to adversely affect aquatic organisms
 – These effects are often not identified during toxicity studies in New Drug Applications
 – Not likely to cause acute health effects

Ecotoxicology

• What don’t we know?
 – The extent to which these detected personal care products and pharmaceuticals affect wildlife, and whether they affect human health
Ecotoxicology

- Understanding potential risks to aquatic wildlife and humans is complicated by:
 - Multiple routes of exposure
 - Exposure to multiple contaminants
 - Low level chronic exposures

Ecotoxicology

- How do we assess the affects?
 - Animal exposure studies
 - Environmental risk assessments
 - Human health risk assessments

Animal Exposure Studies

- Knowledge of the ecotoxicity of pharmaceuticals is limited to a few substances in a few test species

<table>
<thead>
<tr>
<th>Substance</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen</td>
<td>NSAIDS</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Fibrates</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>Statins</td>
</tr>
<tr>
<td>Antiepileptics</td>
<td>Beta blockers</td>
</tr>
</tbody>
</table>
Animal Exposure Studies

• Mechanisms of toxicity may differ between acute and chronic low-dose exposures
• Need to determine if subtle effects are occurring
 Growth Sex ratio
 Fertility Reproductive behavior
• Must use ecologically relevant endpoints
 Growth impairment Delayed reproduction
 Delayed development

Antibiotics
• Some detected antibiotics persist in environment
• Development of antibiotic-resistant bacteria is of large concern
• Bacterial breakdown products of some pharmaceuticals are toxic

Antidepressants
• SSRIs bioaccumulate in the environment
• Long-term exposure has resulted in delayed development in fish and metamorphosis in frogs

Estrogens
• 5.7% US streams surveyed had >5 ng/L 17α-ethinylestradiol
• 2 ng/L partial life-cycle exposure caused sex reversal
• 5 ng/L life-long exposure caused 56% reduction in fertility of F1 generation
• 0.2 ng/L for life-long exposure caused 20% reduction in hatching success
Environmental Risk Assessments

• Risks are characterized by comparing estimated environmental exposure concentrations with estimated environmental toxicity concentrations.
• Efforts are being made to use the more ecologically relevant toxicity endpoints for determining environmental toxicity concentrations.

Human Health Risk Assessments

• Few studies have addressed the affects of trace levels of pharmaceuticals in the environment on human health.
• Recent studies with new twists:
 – Predicted environmental concentrations
 – Assessment of sensitive populations
 – Prescribed vs. naturally occurring estrogens

Human Health Risk Assessment: Predicted Environmental Concentrations

• Evaluated 44 active pharmaceutical ingredients (22 general pharmacological classes) for impact on human health due to exposures from:
 • Drinking water
 • Fish consumption

From Cunningham et al. Regulatory Toxicology and Pharmacology, 2009
Human Health Risk Assessment

Predicted Environmental Concentrations

• Pharmaceutical Environmental Concentrations (PEC) in water were predicted using with modeling
 • Insufficient measured concentrations available
 • Quantities discharged include products by sale from all sources
• Predicted No Effect Concentrations (PNEC) were developed
 • Standard EPA drinking water and fish consumption assumptions were used
• PEC:PNEC was used to assess risk

RESULTS
• PEC:PNEC were less than 1 for all pharmaceuticals evaluated

CONCLUSIONS
• The evaluated pharmaceuticals do not pose a threat to human health when in drinking water

SIGNIFICANCE
• Predicting PECs with models allows assessment on non-detect pharmaceuticals in water

Assessment of Sensitive Populations

• Evaluated risk of meprobamate, carbamazepine, and phenytoin exposures
 • Accidental exposures to stream water and fish consumption
 • Ingestion of drinking water

From Kumar & Xagoraraki, Regulatory Toxicology and Pharmacology, 2010
Human Health Risk Assessment
Assessment of Sensitive Populations

- Chronic Daily Intakes (CDIs) calculated using
- Default exposure parameters for recreational exposure, fish consumption, and drinking water ingestion
- Pharmaceutical concentrations in stream and drinking water were measured values in literature
- Acceptable Daily Intakes (ADIs) developed from subpopulation-specific toxic endpoints
- CDI:ADI was used to assess risk

RESULTS
- 99th percentile CDI:ADI less than 1x10^-4

CONCLUSIONS
- The evaluated pharmaceuticals do not pose a threat to human health

SIGNIFICANCE
- Characterize risk using subpopulation-specific toxic endpoints

Human Health Risk Assessment
Prescribed and Naturally Occurring Estrogens

- Compared exposure to estrogens in drinking water with:
 - Exposures to natural estrogens in diet
 - Acceptable daily intakes (ADIs)

From Caldwell et al., Environmental Health Perspectives, 2010
Human Health Risk Assessment
Prescribed and Naturally Occurring Estrogens

• Estrogen concentrations in drinking water were predicted
 • Endogenous estrogens from diet and naturally produced
 • Prescribed endogenous estrogens
 • Prescribed synthetic estrogen
• Drinking water exposures determined using predicted concentrations and default intake rates

Human Health Risk Assessment
Prescribed and Naturally Occurring Estrogens

• Estrogen exposure in the diets were evaluated using
 • Milk consumption of young children
 • Adult female eating omnivorous diet
• ADIs were those available in the literature

RESULTS
• Child exposure to total estrogens in drinking water is about 150 times lower than exposure from milk
• MOS for total estrogens in drinking water ~2 times lower than MOS for prescribed estrogens
• MOS for children for total estrogen in drinking water ranged from 28-5120
Human Health Risk Assessment
Prescribed and Naturally Occurring Estrogens

CONCLUSIONS
• Prescribed and total estrogens in US drinking water are not causing adverse effects, including sensitive subpopulations

SIGNIFICANCE
• Used Predicted Environmental Concentrations and toxicity benchmarks for sensitive subpopulations

Summary
• Current human health risk assessments are not identifying problems with exposures to pharmaceuticals in water
• Environmental risk assessments will be of better value as our understanding of the significance of exposures to pharmaceuticals in water improves
• Animal exposure studies are showing that aquatic biota are at risk with exposures to pharmaceuticals in water