

Assessment of student compounding knowledge in a one semester skills lab course

Abigale T. Matulewicz, Pharm.D¹, Lauren Caldas, Pharm.D¹, BCACP, Fawaz M. Alotaibi, MS, Pharm.D¹, Giulia Barlow, Pharm.D², Laura Morgan, Pharm.D., M.Ed., BCPS¹

1Virginia Commonwealth University School of Pharmacy, Richmond, VA, ²Carolinas Medical Center, Charlotte, NC

BACKGROUND

- Methods of educating our future pharmacists in the skill of compounding have been less defined:
- Curricula have shifted focus towards clinical therapeutics, away from traditional dispensing and compounding roles¹
- Both ACPE 2016 Standards and the NAPLEX continue to include compounding as part of their expectations^{2,3}
- Compounded preparations continue to be prevalent in community practice, with some pharmacies reporting a make up of more than 20% of their total annual prescriptions⁴
- A need remains for student pharmacists to obtain quality instruction on the principles and technique of nonsterile compounding, but few studies examine the best way to deliver the content⁵

OBJECTIVE

To demonstrate the effect of a stand-alone non-sterile compounding course on student knowledge and assess development of student confidence in non-sterile compounding knowledge and skills

METHODS

- First year students in a required, stand-alone 15-week Foundations of Pharmacy Practice course completed a 15 question pre- and post- knowledge assessment on the first and last day of lab
- The assessment was multiple choice in format and students were given up to 20 minutes to complete the questions remained identical between the pre- and post-assessment
- Assessment questions were broken down into three categories:

Legal Requirements

- "What is the beyond use date (BUD) of a watercontaining oral formulation?"
- The Master Formulation Record should include which of the following...

Calculations

"You are compounding
 12 suppositories each
 containing 0.3g of
 aspirin in cocoa butter.
 The aspirin has a
 density factor of 1.2 How
 much cocoa butter is
 needed to prepare the
 suppositories, if each
 mold holds 1.9g?"

Application

- "What type of base would be required to compound a nonwashable, easily spread, hydrophilic ointment?"
- Which of the following statements is true regarding percutaneous drug absorption?"
- Confidence questions were included for the three categories and were scored on a 3-point Likert-type scale:
 - "How confident are you in your ability to assign the correct beyond use date (BUD) to a product you have compounded?
 - "How confident are you in your ability to accurately complete calculations necessary to compound suppositories?"
 - "How confident are you in your ability to prepare a compounded product for a patient on your Introductory Pharmacy Practice Experience (IPPE) rotation?"
- Paired T-tests and McNemar's test was utilized for data analysis, with a p-value of <0.05 indicating significance
 - Descriptive statistics were used to analyze overall performance on the assessment

RESULTS

• A total of 122/122 students completed both the pre- and post-assessment (100% response rate)

Demographics of Class of 2020 (n=122)					
Mean Age (years)	22.5 (19-42)				
Gender (%)	88 Female (72)				
Students with Baccalaureate Degree (%)	118 (97)				
Mean Cumulative GPA On Admission	3.3				

Comparison of Pre- and Post- Assessment Student Performance by Question Category (n=122)

	Pre-Assessment	Post-Assessment		
	No. Correct (%)	No. Correct (%)	p value	
Legal				
Components of master formulation record	115 (94)	121 (99)	.014	
Non-aqueous BUD	70 (57)	100 (82)	<.001	
Aqueous BUD	60 (49)	92 (75)	<.001	
Calculations				
Active ingredient from ratio strength	33 (27)	91 (75)	<.001	
Diluent calculation from solubility ratio	5 (4)	118 (97)	<.001	
Weight-based dosing	2 (1)	52 (42)	<.001	
Base determination using density factor	48 (39)	85 (70)	<.001	
Application				
USP 795 water requirements for liquid preparations	107 (88)	113 (93)	0.13	
Active ingredient absorption for topical preparations	95 (78)	113 (93)	<.001	
Ointment base selection	47 (39)	30 (25)	.01	
Properties of gel-based preparations	53 (43)	90 (74)	<.001	
Definition of density factor in suppository preparations	43 (35)	114 (93)	<.001	

BUD=beyond use dating; USP=United States Pharmacopeia

Comparison of Pre- and Post- Assessment Student Confidence by Question (n=122)

	Pre-Assessment Frequency (%)			Post-Assessment Frequency (%)			
	Not Confident	Somewhat Confident	Confident	Not Confident	Somewhat Confident	Confident	p value
Preparing compound							
during IPPE rotation	75 (61)	39 (32)	8 (7)	1 (1)	38 (31)	83 (68)	<.001a
Assigning BUD	53 (44)	59 (48)	10 (8)	0 (0)	21 (17)	101 (83)	<.001ª
Completing required							
calculations	57 (47)	60 (49)	4 (4)	0 (0)	46 (38)	76 (62)	.06

^a McNemar's test was used to determine significance, defined as *p*<0.05, between composite of *somewhat* confident and confident respondents and not confident respondents

IPPE=Introductory Pharmacy Practice Experience; BUD=beyond use dating

DISCUSSION

- Significant improvement in performance for the knowledge based material was seen with 75% of the assessment questions
- All calculations category questions saw significant improvement in performance consistent with the delivery method of the content (continual reinforcement, practice opportunities, high stakes exam)
- Majority of legal requirements category questions saw significant improvement crucial knowledge for the higher emphasis and scrutiny placed on compounding pharmacies after recent safety concerns⁶
- Self-reported confidence towards legal requirements increased significantly (83% vs. 8%)
- Self-reported confidence towards compounding ability increased significantly (68% vs. 7%)

LIMITATIONS

- Student performance declined on the post assessment for one question (Ointment base selection), likely due to the lack of hands-on application for that concept during the course
- Students had recently completed a required pharmaceutical calculations course in the preceding semester,
 which could have impacted their knowledge and confidence on the calculations portion of the assessment
- Because students' performance and confidence was assessed immediately following the completion of a focused semester, performance may not reflect true knowledge retention beyond what is expected for typical performance in this course
- Only one cohort of students was studied which limits generalizability to other years at VCU or to pharmacy students at other schools

CONCLUSION

- A stand-alone, single semester, non-sterile compounding focused laboratory course was successful in increasing first-year students knowledge
- Student confidence in two aspects *legal requirements and application* significantly increased between the two assessments
- Future studies are needed to assess retention of knowledge beyond the single semester curriculum, especially as it pertains to compounding practice, APPE experiences, and the *Pharmacy Curriculum Outcomes*Assessment (PCOA)⁷

REFERENCES

- 1. Newton DW. Compounding paradox: taught less and practiced more. Am J Pharm Educ. 2003;67(1):12-14.
- Accreditation Council for Pharmacy Education. Accreditation standards and key elements for the professional program in pharmacy leading to the doctor of pharmacy degree. https://www.acpe-accredit.org/pdf/Standards2016FINAL.pdf. Updated January 2015. Accessed January 11, 2017
- 3. National Association of Boards of Pharmacy. 2016 candidate registration bulletin. http://nabp.pharmacy/wp-content/uploads/2016/12/NAPLEX_MPJE_Bulletin_12-1-16.pdf. Updated January 2016. Accessed January 11, 2017.
- 4. National Community Pharmacists Association. Community pharmacy compounding survey November 2012. http://www.ncpanet.org/pdf/Survey-compounding-results.pdf. Accessed January 11, 2017.
- 5. Shrewsbury R, Augustine S, Birnie C, et al. Assessment and recommendations of compounding education in AACP member institutions. Am J Pharm Educ. 2012;76(7).
- 6. Institute for Safe Medication Practices. Sterile compounding tragedy is a symptom of a broken system on many levels. http://www.ismp.org/Newsletters/acutecare/showarticle.aspx?id=34. Updated October 2012. Accessed May 13, 2017.
- 7. National Association of Boards of Pharmacy. Content areas of the pharmacy curriculum outcomes assessment (PCOA). https://nabp.pharmacy/wp=conent/uploads/2016/07/PCOA-Content-Areas-9.6.16.pdf. Updated September 2016. Accessed May 13, 2017.

Correspondence: Abigale Matulewicz, atmatulewicz@vcu.edu AACP Annual Meeting, Boston, Massachusetts. July 22-25, 2018