Applying Generalizability Theory to Provide Validity Evidence for a Pharmaceutics Course Grade: Combining Exam Reliability Coefficients

Michael J Peeters, PharmD, MEd*; M Kenneth Cor, PhD, MEd, BScEng#; Sai HS Boddhu, PhD*; Jerry Nesamony, PhD*

*University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo OH, USA
University of Alberta Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton AB, Canada

Purpose

- Demonstrate use in pharmacy education of Generalizability Theory (G-theory) to combine reliability from three separate exams into an overall course-grade reliability

Key Findings [Implications]

- G-theory integrated reliability from multiple exams
 - Reliability of final course-grades was okay but could be improved
 - Reliability improved if:
 - More examinations (occasions)
 - Can have fewer MCQ on each exam (AND fewer MCQ over all exams combined!)
- G-theory provides vital generalization evidence for course-grades
- By extension, reliability for grade-point-average of an entire program will likely be improved further by combining multiple courses

Why did we do this study? [Background]

- Pharmacy colleges/schools should be generating validation evidence for assessments used to make important decisions1
- Kane’s Framework of validation2
 - Scoring ➢ Generalization ➢ Extrapolation ➢ Implications
- The vast majority of pharmacy education uses Classical Test Theory (CTT), where reliability is limited to each exam’s scores3
 - In CTT, individual exam reliabilities cannot be combined from multiple exams/occasions4
- While rarely reported in pharmacy education,3 Generalizability Theory (G-theory) can combine results from multiple exams—reliability can be estimated for more complex measures

What did we do? [Methods]

- First-year PharmD students took a pharmaceutics course
 - 12 weeks of lectures
 - Three exams
 - Kuder-Richardson Formula-20 (KR20) estimated the CTT-based reliability of each exam
 - For G-theory, we used G-String-IV
 - G-theory model was: students crossed with items nested within occasions/exams (p x i:o)

What did we find? [Results]

- 101 students took two midterms and one final-exam
 - Exam1=50 MCQ (KR20=0.685)
 - Exam2=43 MCQ (KR20=0.647)
 - Exam3=67 MCQ (KR20=0.665)

- Our combined G-coefficient/reliability of course-grade was 0.710

- Our variation sources (%)
 - Sources
 - %
 - student 2
 - occasion 0
 - item:occasion 21
 - student x occasion 1
 - student x item:occasion (& other error) 76

- Our variation sources (%)
 - Number of Items
 - Occasions
 - 20 30 40 50 60 70 80
 - 1 0.290 0.359 0.406 0.442 0.469 0.490 0.508
 - 2 0.450 0.528 0.578 0.613 0.638 0.658 0.673
 - 3 0.551 0.626 0.672 0.703 0.726 0.743 0.756
 - 4 0.621 0.691 0.732 0.760 0.779 0.794 0.805*
 - 5 0.672 0.736 0.774 0.798 0.815* 0.828* 0.838*
 - 6 0.710 0.770 0.804* 0.826* 0.841* 0.852* 0.861*

- Our expected reliability with increased multiple-choice questions (MCQ) and occasions/examinations [Graph of green table above]

- References